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ABSTRACT 

Estimation o r  learning problems a r i se  in practical  systems in 

many ways. 

estimation problem may be supervised o r  unsupervised. 

estimation may be used for both these problems. 

tion of a supervised learning problem is reasonably simple while the 

unsupervised Bayesian learning is  enormously complex. A practical 

way of solving an  unsupervised learning problem i s  to convert it into 

a supervised learning problem by labelling the observation before using 

it for learning. 

a decision process  as the label. 

feasible but the resulting estimates do not converge to the correct  value. 

A learning scheme, 'learning with a probabilistic teacher ' ,  is 

Depending on the learning information available, the 

Bayesian 

The Bayesian solu- 

Decision directed learning scheme uses the result of 

The computations for this scheme a r e  

proposed in which a label is  generated as a random variable from an  

appropriate probability density function. 

solution to an unsupervised learning problem and assures  the convergence 

of the estimate to the correct  value. 

the resulting estimate is  twice the mean square e r r o r  of the 'learning 

This scheme leads to a feasible 

The average mean square e r r o r  of 
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with a teacher '  estimate. This learning scheme can also be used to 

estimate the state of a Gauss Markov sequence when the observation 

process has additive a s  well a s  multiplicative noise- 
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CHAPTER I 

INTRODUCTION 

An estimation problem a r i se s  in practical systems when the 

value of some parameter x of the system is unknown and some measure-  

ment (or  observation) z on the system is available. 

is a known function, the value of x may be obtained from z by solving 

this implicit equation. However, i n  many practical  systems some 

parameter v of the function f has to be treated as a random variable. 

Now the knowledge of the function f is not sufficient to get the value of 

x. 

estimation technique. 

techniques require the statistics of the noise E. 

If z = f(x) where f 

It can only be "estimated" from the observation using some statistical 

In addition to the knowledge of the function f such 

The complexity of computations required by any estimation scheme 

depends on the form of f and the statistics of - v. 

in practice only i f  the computations for it a r e  feasible. 

should give 'good' estimates of x. 

of observations i f  available, and result in  an estimate which, in the 

limit, converges to the correct  value of x. 

A scheme can be used 

In addition it 

It should be able to use a sequence 

In some estimation problems two parameters  of f a r e  random 

variables. 

ble. Such problems naturally a r i s e  in  pattern recognition context where 

they a r e  referred to as  unsupervised estimation (or  learning) problems. 

If, on the other hand, the correct  value of 

is called supervised learning. 

unsupervised learning more complex than supervised learning. 

The statistics of the second parameter E may also be availa- 

is available, the estimation 

The presence of additional ncrise makes 

Bayesian estimation may be used to get an optimal solution to 

these learning problems. It is reasonably simple for the supervised 
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learning. 

learning problem and becomes infeasible. 

an  unsupervised learning problem is to convert it  into a supervised 

learning problem by first estimating E a s  I and then treating I (the 

label) a s  the correct value of E. 

called labelling. Now the labelling, as well as the supervised learning 

which follows it, should be feasible and result in a converging estimator. 

The solution gets enormously complex for an unsupervised 

A practical way of solving 

The generation of the label I may be 

The only scheme proposed in literature which makes use of label- 

ling is 'decision directed' learning scheme. 

scheme a r e  feasible but the resulting estimates do not converge to the 

correct  value. 

which assures  that the estimate converges to the correct value. 

The computations for this 

In this work a feasible labelling method i s  proposed 

, 
The proposed labelling method uses a random variable - I as an 

estimate of - H. 

'learning with a probabilistic teacher'.  

mulated in Chapter 11. Its convergence is established. Some examples 

a r e  presented to show the behavior of the estimates. 

Therefore the resulting learning scheme may be called 

This learning scheme is  for-  

In some estimation problems the parameter x does not remain 

The observation process may constant over the observation period. 

still  make it an  unsupervised estimation problem. In Chapter I11 we 

show how the proposed learning technique can be used when x varies 

a s  a Gauss Markov sequence. 

The learning scheme proposed in this work opens up a new line 

Various problems r e -  of attack on unsupervised learning problems. 

quire investigation in this connection. 

suggestions for further work. ': 

Chapter IV contains some 

>;C 

Unless otherwise specified, all the variables a r e  considered a s  
continuous variables in this work. 
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I. 1. Estimation Problems in Pattern Classification 

In a pattern classification (or simply classification) problem, 

given an  object and a set  of classes from which the object may have 

been drawn, we have to determine the class from which the object 

was drawn. 

in which the object z i s  defined a n d K t h e  set  of classes (or hypotheses 

To put it in a mathematical framework, let 25 be the space 

o r  labels). 

o r  observed value z we have to determine H EM, the class from which 

To solve the pattern classification problem, for any given 

i 

z was drawn (or the hypothesis which was active when z was drawn). 

The pattern classification problem, therefore, i s  to determine a way 

to process the observation z to make a classification decision which i s  

"optimal" in some sense. 

To define the sense in which the classification decision i s  optimal 

This loss a loss function associated with the misclassification i s  given. 

function depends, both on the correct class of z a s  well a s  the class to 

which it is classified. A reasonable definition of the optimum decision 

system i s  the decision system which minimizes the expected loss func- 

tion. Such a system is nothing but the realization of a Bayes decision 

rule [l]. 

When posed this way the pattern classification problem i s  charac- 

terized by the joint density function p (y) = p ( z ,  H) defined over the 
Y 3 E 

s p a c e y  = 2 x H . Depending on the amount of information available 

three categories of classification problems a r e  possible, that 

(a) We have the complete knowledge of p (y), 

(b) we have no knowledge of p (y), and 

(c) we have partial knowledge of p (y) in  te rms  of the functional 

Y 

Y 

Y 
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i (z, H zx). form of p 

parameters x E 

We do not know the values of some 
2 . 9  E 

The problems in category (a) can be completely solved using Bayes 

decision rule [I]. 

referred to a s  'non-parametric ' decision problems. 

contains a survey of techniques applicable to the non-parametric prob- 

The problems in the second category a r e  commonly 

Reference [2] 

lems, among other things. 

For  the problems of category (c) we know the functional form of 

the joint probability density function pz H(z9 Hix). 

unknown parameter x a s  a random variable, 2, and summarize the 

If we can t reat  the 
-> - 

uncertainty in  our knowledge about i t  as a pr ior  probability density 

function p (x), we may express p (z, H) as - X 2, E 

where 

(z, H;x) = p (z, H:x) 
'z, - - -  H/x 2 9  E 

Now we can use the Bayesian decision techniques applicable to category 

(a). If, in addition, a sequence of observations from (&M) space is 

available, we may t r y  to use the information contained in this sequence 

in  improving our knowledge about - x. We may do this by estimating the 

value of 2 using the given sequence. 

Therefore, we see that in  the pattern classification problems of 

category (c), an estimation problem a r i se s  when we have the additional 

knowledge available a s  the sequence of observations. 

fication literature such estimation problems a r e  also called 'learning' problems .'k 

In pattern classi- 

.L T 

In this work we shall use 'estimations and 'learning' interchangeably. 
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I. 1 a 1. Supervised and Unsupervised Learning in  Pattern Classification 

In a learning problem associated with a pattern classification 

problem of category (c),  we require a sequence of observations from 

the s p a c e y ,  which can be used to estimate or  learn the value of the 

unknown parameter. 

'learning information'. 

one of the two forms: 

a) The observed sequence has the form Zdk = [yl, y2, .  . . , y,] = 

This sequence of observations is also called the 

The learning information may be available in 

[('I 9 ' 9 ('k' H k )], i. e. we a r e  given the correct 

classification for all the observed values of - z in the sequence. 

('2, H z ) 9  ' 

b) The observed sequence has the form j k  = Lz1.9 ' 2 9  ' ' '  9 'k]" We 

a r e  given the observed values of - z in the sequence with no infor- 

mation regarding the classification of each of the zk's.  

The structure of the learning procedure depends on the form in 

which the learning information i s  available. 

mation has the form (a) the correct  classification for each observed 

value of 5 in the sequence is also available. 

sequence of observations (by some external means) is required to 

When the learning infor - 

Some supervision of the 

generate the correct  classifications. 

this information i s  called 'supervised learning * or  'learning with a 

teacher '  problem. 

not require any external supervisions and hence i s  called 'unsupervised 

learning' o r  'learning without a teacher problem. 

Hence the learning problem using 

The learning information in  the second form does 

I. 2. Supervised and Unsupervised Learning 

So far we have seen how the supervised and unsupervised estima- 

tion problems occur in pattern classification. To consider these 
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estimation problems formally, in this section we formulate these 

problems in  general. The formulation here  will be the basis of all 

our discussions in  this work. 

Io 2. 1. Problem Formulation 

We consider the following 

1 )  - z is a random variable defined in 2 space.>:< 

2 )  - H is a random variable defined i n W  space, the space of c lasses  o r  

hypothe s e s . 
3 )  A joint probability density function p (y) i s  defined o n y  = (2 xH) 

Y 
space. 

t 4) A density function p (H) is defined on H a n d  is known. H - 
Therefore we may express p (y) as 

41. 

5) The conditional density functions p (z;H:x) have some unknown z& 
parameters  x. We a r e  given the functional form of this conditional 

density function. 

6)  The correct  value of the unknown parameter x i s  x . Based on this 
0 

structure we define the following two problems: 

Problem A - Given a sequence of observations in  the form 7dk = (jk, A ) =  

we have to make an optimal estimate of x. 

>k 
The spaces that we consider here  a r e  continuous spaces unless 
otherwise specified. 

'WhenH is discrete the density function pH will be a collection of delta 

functions which we accept as an admissibTe density function. 
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Problem B - Given a sequence of observations in  the form 

jk = [zI7 z 2 , .  . e ,  z ] where k 

and 

We have to make an  optimal estimate of x. 

To specify the sense in  which we desire  the estimate of x to be 

optimal, let &(Z - x)  

x, the estimated value of x. 

be the loss function associated with the value 
L. We define the cost function J as 

J = E[{d(^x - x)}/ learning information] . (1.4) 

We shall call the estimate 'optimal' i f  it minimizes the cost function 5 .  

We note that Problem A is a problem of 'supervised learning' o r  

'learning with a teacher '  while Problem B is a problem of 'unsupervised 

learning' o r  'learning without a teacher '. 

I. 3 .  Bayesian Estimation Philosophy and Technique 

Let us examine the Bayesian estimation techniques for solving 

the problems A and B. 

The Bayesian estimation philosophy assumes that x is a random 

variable - x defined in  some appropriate space X. It further assumes 

that a pr ior  distribution p (x) is available which summarizes the un- 

certainty in  x. Now to evaluate the value of the cost function J, say 

X - 

:k 
The probability density function pz (z,) defined this way is called a 
'mixture '. -k 

:: ::E 
The observed z is  generated from the space 2 as (z  H ), though k k' k 

k' we a r e  allowed to observe only z 
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for a single observation 2 = z9  all  we need i s  the posterior density 

function p (x; z). Hence the computation of the posterior density z/z 
function is also sufficient to find the estimate of x. The same idea 

applies when we observe a sequence. Now we have to calculate the 

posterior density function for this sequence. 

The central idea of the Bayesian estimation scheme is  the 

computation of the posterior density function. Therefore, by estima- 

tion we shall imply the computation of the posterior density function. 

As a result we may rewrite the statement of Problem A and B of 

Section I. 2. 1 as follows: 

Problem A - The Supervised Learning Problem 

Given a sequence of observations ';f = (y,, y2, . . . ~ y,) and an 

a priori density function p (x) compute the posterior density function 
X - 

Problem B - The Unsupervised Learning Problem 

Given a sequence of observations j k  = ( z l ,  z 2 , .  . . , z ) and an k 

a priori  density function p (x) compute the posterior density function 
X - 

Let us see how the posterior density function can be computed. 

I. 3 .  1. The Computation of the Posterior Density (Batch Processing) 

Using the Bayes rule we may express the posterior density function 

for the problem A as 
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whcre 

Here 

Knowing the values for yk we can use these equations to compute the 

x / ~ + ~ ( ~ ;  3 k) posterior density function p - 
The Eq. ( 1 .  5) requires the knowledge of p +k/z(2k; x) which is 

the joint conditional density p . *lk/x(YIY Y29 e * * 9 Yk; x). Let 
Y19Y27 ' - 

us  assume that 

k 

i. e. q ' s  axe conditionally independent, given x. 

leads to some simplifications in the equations above. 

This assumption - 

A very similar computation is required to compute the posterior 

density function p ( x ; ? ~ )  for Problem B. We may express 
x'%k 

where 

.I< -6- 

Under this assumption the conditional independence of z .  I s ,  given 2, 
follows by integrating both sides of (1.8) over the space on which the 
sequence is  defined. This implies 

-1 

'k 

P /x(3k5xx) = I? P, /x(zi;x) * (1.8a) 
i=l  + -. +k - 
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(1.10)  

and 

(1.11) 

The forms of Eqs. (1.9) and (1. 10)  a r e  very similar to the forms of 

(1. 5) and (1. 6) respectively. For Problem B we require the additional 

(1. 11) to take into account the uncertainty about the classifications of 

the observed sequence. 

The computations for the posterior density function using (1. 5), 

(1.6) and (1. 7) for Problem A,or (1. 9), (1. 10) and (1. 11) fo r  Problem B 

require observing the k elements of the sequence. 

of computations may, therefore, be called the Batch Processing mode. 

This arrangement 

I. 3 .  2. Definition of the Complexity of Computations Measure 

A meaningful measure of the complexity of computations is 

required to compare the ease of implementation of various schemes. 

For this purpose,as i ts  measure of complexity,we shall use the number 

of words of computer storage required for any scheme or computation. 

Here we assume that a number can be stored in one word of computer 

memory with arbi t rary degree of accuracy. 

I. 3 .  3. The Computation of the Posterior Density (Recursive Processing) 

As we noted in Section I. 3.1 the batch processing mode operates 

on the complete sequence of observations. If the observations a r e  made 

sequentially, we have to store all k observations before we can s tar t  
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the computations. 

batch processing mode. 

arranging the computations in a recursive manner, such that we 

This adds to the computational complexity of the 

We may avoid this additional complexity by 

compute the posterior density function after each new observation 

from the sequence. 

The computations can be made recursive by arranging them a s  

follows. For  Problem A we express the posterior density function 

(1.12) 

where 

(1. 13) 

Under the assumption (Al)  of conditional independence, these 

equations can be simplified a s  

where 

Similarly for Problem B we write 

(1.16) 
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where 

(1 .  17 )  

and 

( 1 . 1 8 )  

Let us assume that 

( 1 . 1 9 )  

i. e. H i s  independent of - x and +k-l and i s  identically distributed. 

Under this assumption we can simplify ( 1 . 1 8 )  as  

-k 

The starting point for both the problems is the a priori  density 

function p (x) which is assumed given o r  known. 

puting the posterior density function for the kth step (i. e .  a computation 

The process of corn- 
X - 

of ( 1 . 1 2 )  for Problem A or  (1 .  16) for Problem B )  i s  known as  'updating'. 

The computation of the posterior density function this way, i s  

called 'Bayesian Estimation Scheme or  'Bayesian Learning Scheme I .  

Eqs. ( 1 . 1 2 ) ,  ( 1 . 1 3 )  o r  ( 1 . 1 4 ) ,  ( 1 . 1 5 )  define a recursive Bayesian 

Learning Scheme for the supervised learning problem (Problem A) and 
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Eqs.  (1.16),  (1. 17) and (1. 18) define a recursive Bayesian Learning 

Scheme for the unsupervised learning problem (Problem B).  

I. 3.4. Convergence of Bayesian Learning Scheme 

As formulated above, the use of the Bayesian learning scheme r e -  

quires computing a sequence of posterior density functions. 

convergence of the Bayesian learning scheme we mean that the sequence 

of the posterior density functions converges with probability one, to a 

delta function at the cor rec t  value of the unknown parameter x, i. e. 

By the 

o r  

(1.20) 

where x is the correct  value of the parameter x. 
0 

The convergence of the Bayesian learning scheme in this sense 

has been studied by various authors [3], [4], [5]. The convergence in  

the form of (1. 20) has been established under very general conditions. 

In this work we shall consider the convergence only in the sense 

of (1.20). 

I. 4. The Implementation of the Bayesian Learning Scheme 

For  the supervised and the unsupervised learning problem we can 

define a Bayesian learning scheme. 

is also guaranteed. 

practical  implementation of this learning scheme. 

The convergence of this scheme 

Let us examine various questions relating to the 

In principle we can always use the Bayesian learning scheme for 

the supervised as well as the unsupervised learning problem. 

operations required by the Eqs. (1. 14), (1. 15), (1. 16) ,  (1.17) and (1. 18) 

All the 
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a r e  well defined. 

to operate on general continuous functions. 

the reach of present day digital computers. 

This, however, calls f o r  the ability to store, and 

This capability is beyond 

If we consider discrete X9 N and 2 spaces, we may be able to 

store the complete functions by storing the value of the functions a t  

every point in the space on which they a r e  defined. 

been studied by Fralick [4]. 

dures for such implementations. 

very few points, this implementation method is very complex. 

complexity depends on the size of the spaces involved. 

This method has 

He suggests some computational proce- 

Unless the spaces involved contain 

This 

For  continuous space we have to deal with continuous functions. 

The only way of handling such functions in a digital computer i s  when 

the functions have a parametric form. Then we can generate the value 

of the function at  any point in this space, knowing the parametric form 

and the values of the parameters.  

In Problem A we use ( 1 .  14) and (1.15) for updating. Hence we 

require the knowledge of the density functions p 

with the value y 

and p along 
Yk/z x/%k- 1 

to compute the posterior density function p 
k x / . k *  If 

we assume that 

i. e. the form of this function remains the same for all  k, we only need 

to store the parameters for p to generate this function and use it in 
Y/2 

Eqs. (1.14) and (1.15). Now, i f  p ( ~ ; 2 ~ )  also entertains a para- 
X/%k 

metric form and this parametric form remains the same fo r  a i l  k, we 

can car ry  out the required updating for any number of steps. The up- 

dating at  any stage requires computing the values of the parameters of 
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When the functional form of the posterior density functions 

remains the same for all k, a fixed finite dimensional suffi- 
pdq-k  
cient statistic exists for these functions [6]. The density functions 

satisfying this requirement (of fixed form) a r e  called reproducing 

density functions. Various authors [6], [7] have studied the problems 

which entertain the reproducing density functions and the conditions 

under which such density functions exist. Spragins [6] has found that 

the existence of the reproducing density functions requires assumption 

(A3) and depends only on the form of p . 
Y b  

For  the unsupervised learning problem (Problem B)  we have to 

use Eqs. (1.16), (1. 17) and (1.18). The form of (1.16) is like that of 

(1. 14) and the form of (1. 17) like (1. 15). The density function 

) has to be computed using (1.18). The existence 
Pkk/&,+k-l(Zk; x9 t k - 1  
of the reproducing density functions for this problem depends on the 

form of p 

computations. 

for unsupervised learning problems.:: So, if we s tar t  with a p (x) having 

a parametric form, and go through the recursive computations for the 

and hence on the form in  which (1. 18) effects the 
zk/z9 +k- 1 

In practice no reproducing densities a r e  known to exist 

X - 

posterior density function, either the posterior density function wi l l  

have no parametric form or  the number of parameters  required for its 

form will increase exponentially. In either case the computations become 

extremely complex and infeasible. Therefore the Bayesian learning 

scheme cannot be used for the unsupervised learning problems with 

continuous functions. 

To elaborate further on these points let us consider a n  example. 

.I< -,. 
Note added in proof: However K.  Prabhu and the Author recently dis- 
covered an  example of reproducing density under unsupervised learning. 
We intend to publish this seperately [15]. 
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I. 4. 1. An Example 

Let 

2k = H x t x k  -k 

where 

(1.21) 

Ho with probability p 

-k H = (  

0 with probabiiity (1 - p) 

x is the unknown constant, 

is a purely random sequence 2 Pv (vk) = P,(vk) - N(o, R, - -k xk 

and H a r e  independent. Depending on the observed sequence, we xk -k 

define the following two problems: 

Problem A1 - Observing the sequence Yk = [ ( z 1 9  - " ? ('k, €3 k )I  
compute the sequence of the posterior density functions 

Problem B1 - Observing the sequence = [ z l ,  z2 , .  . . , z ] compute !k k 

the sequence of the posterior density functions p 
z'#k ' 

For this example 

1 0 2  - -[z -H x] 
0 1 2R k (zk;H , x )  = - 'z -k /H -k9- x 

(1.22) 

(1. 23) 

1 2 
1 ---[.I 

- (  1.24) 2R k 
(2 - 0,  x) = - 'Ek/Ek, 2 k' Jzse 
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Let us assume that the prior density function p 

Let us see the computation steps for the posterior density function 

is given as N(G9 P ). 
X 0 - 

for both these problems. 

Solution of Problem A1 . 
For  the obse rva t ionq  = Y 1  = (Zl’H1) 

00 

1 - 2  1 2 - -(x-x) -=(z1-H1x) 
dx 2R e 

o r  

1 - 2  - -(x-x) 
0 

2P 
e 

1 r 
pz/Yl = \  

1 - 2  - -(x-xl) 
2p1 e 

1 

i f  H1 = 0 

(1. 25) 

i f  H~ = HO 

where 
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-1 -1 OT -1 o P1 = P  t H  R H 
0 

(1. 26) 

We note that the form of the posterior as well a s  the prior 

density functions is gaussian. As a result, the gaussian density func- 

tion is a reproducing density function for this problem. 

and the variance of this density function form the sufficient statistic 

and can be updated using (1.25) and (1.26). 

The mean 

This updating can be 

easily carried out for any number of stages. 

Eq. (1. 26) defines the well known Kalman filter [8] for this 

problem. We use the Kalman filter to change the mean and the variance 

of the posterior density function when the 'teacher' tells us that 

Hk 7 H . 
as the pr ior  density function for that stage. 

Solution of Problem B1. 

0 Otherwise the posterior density function remains the same 

As H is a random variable we have to use the Eqs. (1.16),  (1.17) -k 

and (1.18) for this problem. 

a s  

Using (1. 18) we may express p 
zk/s9 #k- 1 

2 

(1. 27) 

And from (1 .17 )  for the first  observation z1 
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00 
P 

1 - 2  - -(x-x) 

dx 0 
1 2 P  . -  Jm; e 

Therefore 

1 2 - 1 2 

} 
- -(z -Hex) 

4- (1 - P)e 
2R 1 

0-2 (x;z ) = 1 
(21-H x) 2 

oT z1 

pX/21 

2(RtHoPoH ) 11-p)k - E  
P 

J27r(R t HOP HOT) , e  +-JzR e 
0 

(1.28) 

The form of the posterior density function p (x; z l )  as expressed 
2/21 

by (1.28) is not gaussian any more. It i s  a sum of two gaussian func- 

tions and hence i s  a bimodal function. For  the next observation we 

have to use this as the prior density and compute the posteqior density 
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which, now, will have 4 modes. 

computation the posterior density function will be a weighted SUM of 

2 gaussian functions. 

In general, a f te r  k stages of recursive 

k Three parameters  have to be stored for each 

such gaussian function to reconstruct the posterior density function, 

i. e. the mean, variance and the weight. 

the posterior density function requires 3 x Zk words of storage. 

Therefore, a f te r  k stages 

This 

storage requirement keeps on increasing exponentially. As a result 

we cannot ca r ry  out this computation for more than a few stages and 

cannot use this method fo r  solving this problem. 

I. 5. Labelling 

According to the formulation of the Section I. 2.1 the only difference 

between Problem A and Problem B i s  in t e r m s  of the learning infor- 

mation. 

sequence of 'classified'* samples, 3k = [(zl ,  H1)' (z2' H2), . . . , (zk9 H )I,  
while for Problem B we only have a sequence of unclassified samples, 

lk = [zl, z2, .  -, zk]. 

venience of using the reproducing density functions, while the solution 

of Problem B requires the ability to manipulate general functions. 

F o r  Problem A the learning information is available a s  a 

In the solution of Problem A we have the con- 

If 

we can convert the Problem B into an  appropriate Problem A, we may 

be able to use the computational ease of reproducing densities. To con- 

vert  the Problem B into such a Problem A, therefore, we should get a 

"label" $ from the s p a c e x  for each z 

a s  a classified sample. 

Now we can t reat  (zk,$) = y;C k' 

>:< 
By a classified sample we mean the value of z 
value of H which was active for the kth observation. 

along with the correct  k 
k 
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If we adopt this philosophy of labelling in  solving the unsuper- 

vised learning problem the solution can be carr ied out in two steps 

(Figure 

Step I. 

Step 11. 

1). 

Labelling - Having observed the sample z and knowing the k 

pr ior  density function at this stage as p (z;&1:f.k-1), 
x/%k- 1 

where “ek-l= f l ,  f2, * .  . (the sequence of labels generated 

so  far), a label $ has to be generated. 

Updating - Using y;C = (zk, $), the pr ior  density function 

(x; jk-l :Xkm1) has to be updated a s  the posterior 
’ d . . k -  1 

*% ). 
X/ k(x’ 7 k”  k density function p 
- f  

The second step here  requires similar computations as the solu- 

tion of a supervised learning problem. 

this step can be carr ied out easily i f  reproducing densities exist. 

solution of the unsupervised learning problem arranged this way, 

critically depends on the method used in generating the label $ in  

step I. We would like the labelling process to  be such that 

(i) it i s  computationally feasible i. e. the computations required for i t  

can be carr ied out in practice, and 

Using Eqs. (1.14) and (1.15) 

The 

(ii) it leads to a sequence of posterior densities w‘hich converge in  the 

sense of (1.20). 

The sequence of samples for any learning problem (A o r  B) is 

generated from a joint density function defined on the space ‘I’ = (t xM). 
In an  unsupervised learning problem we a r e  allowed to observe the value 

of z 

correct  classification. 

labels (the correct  classifications) satisfying the second requirement 

only, though i t  has some value of H associated with i t  as its -k -k 
Therefore, there always exists a sequence of 



FIG. 1.1 LABELLED LEARNING 
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above. 

for the classification of the observed sample. 

The labelling here  is like a "teacher" that generates a label 

This label is then 

used a s  the correct  classification in  learning. 

In selecting the label $ we can make use of z and the pr ior  k 

density function p (xj 1 k- :xk- l ) .  One obvious approach of 
k- 1 

generating the l a b e l i s  by using a decision method for classifying 

the sample z 

mine this method of labelling. 

and using this classification as the label. Let us exa- k 

I. 5. 1. Labelling Method I. Decision Directed Learning 

k If space i s  discrete we may classify the observed sample z 

with a minimum probability of e r r o r  and use this classification a s  

We may write 
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Under as sumption (A1 ), 

( 1 .  30) 

Next, we generate the label as 

for all j # i 
This labelling process, therefore, requires the solution of a 

(1.31) 

decision problem and uses the result of the decision as the label. 

learning scheme using this method of labelling is called 'Decision 

Directed Learning'. Scudder [9] has analysed the behavior of this 

learning scheme. 

The 

When we classify the observation using ( 1 .  3 1 )  we divide the 2 

space in  various finite (or semi-infinite) regions. Each region has 

a particular value H associated with it.  The observed z i s  given 

the label according to the region in which it lies. Therefore, even 

i 
k 

though p (H; z) has a non-zero value for many points of H space, we 
L wzi . 

i label zk as Hk only i f  i t  falls in the region of 2 space having this label. 

As a simple example let us consider the example of Section I. 4. 1 again. 

If we use the labelling procedure described above we shal1,be labelling 

all samples zk 3 z as \ = Ho (Figure 2). Therefore, in learning, we 
0 



/ I \  / I \  REGION FROM WHICH 
USED I N  DECISION D 

I Z- 

FIG. 1.2 DECISION DIRECTED 'LEARNING" REGION 

SAMPLES ARE 
1 1  REGTED 
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shall be using the samples having the probability density function 

shown as the shaded area  in Figure 2. 

be using the samples having a density function p 

example we would expect the Decision Directed Learning scheme to 

converge to a value of x which is larger  than the correct  value. 

To learn correctly we should 

(2; Ho). For  this 21. 

Scudder [9] has analysed the convergence properties of this 

learning scheme. 

e r r o r  in  the limit for this learning scheme and hence it does not con- 

verge in the sense of (1. 20). Patrick [ 101 points out that the Decision 

Directed Learning scheme can be used in practice only under high 

signal to noise ratio problems. 'k 

He points out that there is a finite probability of 

Therefore we note that the labelling method used in the Decision 

Directed Learning scheme does not satisfy the second requirement for 

the labelling process a s  required in Section I. 5. 

I. 6. The Relation of Labelling to the Bayesian Learning Scheme 

Let us consider the unsupervised learning problem (Problem B) 

with a discrete space. Let space have n points. If we observe a 

sequence consisting of k observations, there a r e  n possible k 
fk 

sequences for the labels. 

In the Bayesian learning scheme we s tar t  from the prior p (x) 
X - 

and observing z = z1 we compute p (x;z l )  using Eqs. (1. 16), (1.17) 
-1 5/51 

and (1. 18). As )-Lis discrete the integral in (1. 18) can be replaced by a 

summation and we write (1. 16) a s  

4. -I. 

For  more about this learning scheme see Appendix A. 
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n 
p. 

(1. 32) 

The Bayesian learning scheme computes the posterior density 

function p, 

z l .  The posterior density p 

(x; zl ,  H i )  along all possible (n) classifications H1 i of 
-1-1 9 -1 

(x; z l )  i s  then computed by weighing 
25/51 . 

is the probability that 
H 1, (x; z l ,  H i )  with p (Hi;  z l ) .  Here p px/zl 9 E1 -1 €3 / g  . 1  -1 1 

the classification of z The 

same process goes on at every stage. Hence for  k observations the 

Bayesian learning scheme considers n possible sequences of labels 

was Hi given the observed value of zl.  1 

k 

or  classifications and computes the posterior density function by 

averaging over all the n possibilities. k The computation of the posterior 

density function along any sequence of labels is like "learning with a 

teacher". k The number of such sequences is n and thus gr'ows exponen- 

tially with k.'g 

>$ 
Note that this unsupervised learning scheme has been discussed in 
general ear l ie r  on page 1-15. 
I4 space. 

Here we a r e  considering i t  for  discrete 
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If we a r e  given the correct  classification of all the observed 

samples,out of nk sequences we have to follow only one sequence (the 

correct sequence) of labels. 

one sequence of labels according to our labelling process. 

In any other labelling process we decide 

In genera1,the methods of labelling a r e  limited only by our 

imagination in finding a method of selecting a classification H 

the observed z But does there exist a labelling method which can 

be implemented and which assures  the convergence of the resulting 

learning scheme to the correct value? 

for k 

k' 

In this work we have attempted to answer this question in  the 

affirmative. 

I. 7. Summary 

In this chapter we have reviewed two learning problems. Problem 

A is a supervised learning problem while Problem B i s  an unsupervised 

learning problem. 

of these problems. The solution of the supervised learning problem 

using Bayesian learning i s  reasonably simple while the unsupervised 

Bayesian learning is enormously complex. 

we have seen how the complexity of the unsupervised Bayesian learning 

The Bayesian learning scheme can be used for both 

Through a simple example 

scheme increases exponentially. 

Labelling the observed samples in an unsupervised learning 

problem can lead to a feasible solution. 

presented in the literature uses the solution of a decision problem a s  

the label and hence results in  a 'Decision Directed Learning Scheme'. 

This learning scheme has some undesirable convergence properties. 

The only labelling method 
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In the Bayesian learning scheme for the unsupervised learning 

problem all possible sequences of the classes  a r e  considered. 

final posterior density i s  computed by weighing the posterior densities 

along all such sequences with the probability of their occurance. 

labelling we select one of all such sequences. 

regarding the existence of other possible labelling schemes which 

assure the convergence. 

The 

By 

A question is raised 
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Appendix A .. More about Decision Directed Learning 

The te rm decision directed learning scheme applies to a 

labelled learning scheme in which a label $ is  generated for the 

observation z by a decision process. This decision process i s  

used to classify z 

label \. 
estimation. 

k 

to some class H k k and then Hk is treated as the 

The observation z and the label $ a r e  then used in k 

Therefore to formulate a decision directed learning 

scheme a decision procedure and an estimation procedure a r e  r e -  

quire d. 

When formulated in a Bayesian framework* a Bayesian mini- 

mum probability of e r r o r  decision procedure is used to get the label. 

The observation and the label a r e  then used in  Bayesian estimation. 

Scudder [9] considered a two class problem with two gaussian condi- 

tional densities and assumed the mean of one of the two densities as 

unknown. 

problem in a Bayesian framework and found that asymptotically this 

estimate does not converge to the correct  value. 

He constructed a decision directed estimator for this 

Patrick,  Costello [ lo] ,  [12], [13], [14], and Monds [ l l]  have 

considered decision directed learning in other parametric and non- 

parametric frameworks and have studied general properties of the 

decision directed estimators. 

some properties of a decision directed estimator: 

They have indicated the following a s  

*: 
The decision directed scheme is formulated in this framework in 
Section I. 5. 1. 
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1. A decision directed estimator does not converge to a unique 

value, in general, for a multi class problem. This i 3  because 

of the presence of various t rap states.* 

This estimator, under very general conditions, converges to a 

unique value for a two class problem. 

not the correct value, and it depends on the decision procedure 

used. 

The decision directed estimator uses samples from a finite 

o r  semi infinite region of 

boundaries) in learning about a class.  

2. 

This unique value i s  

3. 

space (determined by the decision 

If the conditional densities 

(2; H)) overlap, such regions do not contain the complete (%/E - 
conditional density function and hence the estimator has some 

asymptotic e r ro r .  A s  the overlap of the density functions de- 

creases  this e r r o r  becomes small  and goes to zero for non- 

overlapping density functions 

The performance of the estimator is very seriously affected by 

the starting values (a priori  information). 

The main advantage of a decision directed estimator is that i t  

is implementable and gives good cost effective performance under 

high signal to noise ratio conditions [ll]. 

4. 

5. 

::c 
A trap state is defined a s  a state at which no further updating is 
possible for the estimate [14]. This is a point in 
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CHAPTER I1 

LEARNING WITH A PROBABILISTIC TEACHER 

In Chapter I we have seen how the Bayesian learning solution 

to the unsupervised learning problem is enormously complex from 

a computational viewpoint and how we can use labelling to reduce 

the complexity of a solution. 

tion to those unsupervised learning problems for which a feasible 

labelling method results in an implementable learning scheme. 

define such problems as Problem C and proceed to consider a labelling 

method which uses a random number generator in its implementation. 

The convergence properties of the resulting learning scheme a re  

established and some examples a r e  presented. 

In this chapter we restr ic t  our atten- 

We 

11.1. A Class of Unsupervised Learning; Problems 

In Section I. 2.1 we considered the framework in which we 

defined two problems, the supervised learning problem (Problem A) 

and the unsupervised learning problem (Problem B).  

of unsupervised learning problems we further assume that 

To define a class 

f~ ) is such that a fixed dimensional sufficient statistic 
x9 ak-1’ k-1 

&+k(x; 3 k) * exists for  the density function p 

In this 

Problem C - 
framework we define Problem C as 

Given a prior density function p (x) and a sequence of 

observations tk satisfying ( l) ,  compute a sequence of 

posterior density functions such that it converges to the 

X - 



2-2 

correct  value a s  the number of observations increases; 

i. e. 

lim p (x;ak:tk) = q x  - xo) 
k-+m x/#k 

w.p. 1 (2.1) 

where p ( x ; J ~ : ~ ~ )  is a posterior density function of 
d%k 

the sequence. 

Problem C defines a class of unsupervised learning problems. 

The formulation of Problem C is aimed towards a solution using 

labelling. The updating process of such a solution requires solving 

a supervised learning problem. 

this supervised learning problem entertains reproducing densities 

Due to the assumption (1 )  above, 

and hence can be solved easily using the techniques discussed in  the 

Chapter I. Therefore the updating process becomes simple. 

To solve Problem C we require a labelling method which assures  

the convergence in the sense of (2 .1) .  In Section I. 5. 1 we noted that 

the decision directed learning scheme does not converge. As a result 

we cannot accept the decision directed learning scheme a s  a solution 

to Problem C. 

11.2. Learninp with a Probabilistic Teacher 

In Section I. 6 we noted that in  the Bayesian solution of an unsuper- 

vised learning problem al l  possible sequences of labels for the observed 

sequence 1 a r e  considered. The posterior density function is then 

computed using Eq. (1 e 32). 

5s Eq. (1. 32) suggests a labelling method. Let us t reat  the label 

as a random variable t+. 

density function 

Let this random variable L have a probability 
-k , 
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This density function can be computed using Eqs. (1 .29)  and (1  e 30) 

and is the same one used in the decision directed scheme. 

we employ it differently i n  this case. 

However, 

Knowing the density function 

pl ($) we generate the label $ by drawing i t  as a random number 

from this density function. 
-k 

With the availability of a random number 

generator this task is within the reach of a digital computer. 

When we generate the labels this way the average posterior 

density function at any stage will be the same a s  the posterior density 

function for the Bayesian learning scheme. 

to hope that this in limit, wil l  lead to a solution of Problem C.  

Therefore i t  i s  reasonable 

In this labelling method the label is generated probabilistically. 

Therefore we may call  the resulting learning scheme as 'Probabilistically 

Directed Learning Scheme' o r  'Learning with a Probabilistic Teacher 

(LPT scheme in  short). A learning scheme of this type was first 

suggested in [l]. Its convergence properties were first established in  

P I .  
Let us consider the LPT scheme in detail. The computations for 

the observation zk a r e  carr ied out in two steps, labelling and updating. 

11.2.1. The Probabilistic Labelling 

At the kth stage of computations, the density function 

" 
When we observe z we proceed to compute p ( Hk; k k$/zk' %k- 1 2 &k-- 1 

) as follows. We write 
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Under the assumption (A2) we can express it as 

Here 

and 

Under the assumption (Al)  of conditional independence we may write 

it as 



2 - 5  

'z /H aG -k -k' %k- 1 ' -k- 1 

,f pz /H ,x ( z  k' ' Hk9 x)Px -/+k- 1 9 &k- 1 cx;I k-19Rk-l)dx x -k -k 

( 2 . 4 )  

Knowing p (x;lk-19zk-1) and zk we can compute the density 
#k- 1 9 &- 1 

function p (Hk; Zk>ak-l, 'k-l) using the Eqso (2* 2), -k H /2 k 9 ~ k - 1 9 g k - l  

(2 .  3) and (2. 4 ) e > k  This computation can be carr ied out for discrete 

a s  well as continuous H spaces. In generating the label 5 we t rea t  

it as a random variable 1 with a probability density function -k 

pLkkk9#k-19&k-l ($; Zk9 tk-lF'k-1) = 

To generate the 

density function 

random number 

label we draw a random number from the probability 

generator can be used for this task. ' 

11.2.2.  Updating 

The updating of the density function requires computing the posterior 

Z ) and (zk,$). Using Bayes rule we can express %k- 1 -k- 1 

>: 
Note that Eqs. (2 .  2 )9  ( 2 . 3 )  and ( 2 . 4 )  a r e  s imilar  to Eqs. (1 .29)  and 
(1. 30).  

'We shall consider the question of generating the label randomly in 
detail i n  Section 11.4.  
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where 

(2.7) 

The updating process defined by Eqs. (2 .6 )  and (2.7) is very 

similar to the solution of Problem A defined by Eqs. (1. 5) and (1.6). 

For  Problem C as defined in Section 11.1 some reproducing densities 

exist for the posterior density function here. As a result the compu- 

tation of the posterior density p (x ; l  k,fk) from the prior 
d % k >  &k 

(x; 3 k-l ,;eks1) is reasonably simple. 
'd+k- 1 9  &k- 1 

We note that the updating process  for the LPT scheme is the 

same as the updating for the decision directed scheme. In fact what- 

ever method we may use to generate the label, i f  we t reat  as the 

correct  classification for z ,the updating process wil l  be the same. 

\ 
k 



2-7 

11. 2.3. The Operation of LPT Scheme 

The recursive computations for the LPT scheme proceed in 

two steps at any stage. At the kth stage we observe -k z - - Zk" The 

density function p , z C ~ - ~ )  is available a s  the prior 
d & k -  1 9 &k- 1 

density function. 

the method described above in  Section 11. 2.1. 

with the observation z k 

As a first step we generate a label % according to 

This label $ along 

is used to update the density function 

to observe z -k t l '  

To s ta r t  the recursive computations here  we require the know- 

ledge of the pr ior  density function p (x) which is used along with the 

first observation z 

x - 
i n  the probabilistic labelling at the first stage. 1 

In 11. 2.2 we noted that the updating process f o r  the LPT scheme 

and the decision directed learning scheme a r e  the same. For  labelling, 

both these schemes require the density function p (Hk; Eklzk9 %k- 1 9  &k- 1 
) *  This density function is used differently by the two 

z k 9 ?  k-19'k-1 , 

schemes. 

assigned that value of Hk for which p is maximum. 

The LPT scheme generates the label randomly with the probability 

dd In the decision directed learning scheme the label !+$ is 

-k €3 12 ky %k- 1.' Lk-  1 

k density function p 

the labels assigned by the two schemes wil l  be the same with the prcba- 

Therefore for an observation z 

Therefore for k observations %? (the sequence of 
'Ek/Zk9 %k- 1 9 &- 1 
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labels assigned by the decision directed scheme) has the largest 

probability of all the sequences of labels the LPT scheme can 

generate; this probability being 
k 

As each of the multiplying factors on the right hand side of this expres- 

sion is less  than one,the probability p &,~+~($;ld; a k) decreases as k 

increases. For  small  k this probability Gay  be significant and as 

this i s  the probability with which the sequence of labels generated 

by the LPT scheme and decision directed scheme a r e  the same,the 

behavior of two schemes may not be significantly different for a small  

number of observations. But a s  k increases this probability becomes 

very small. As a result the convergence properties of the two schemes 

may be entirely different. In Section I. 5. 1 we noted that the decision 

directed learning scheme does not converge. Let us examine the con- 

vergence properties of the LPT scheme next. 

11.3. The Convergence of LPT Scheme 

The way we have defined Problem C in  Section 11.1 we require 

that its solution be in the form of a sequence of posterior density 

functions which converges in  the sense of (2 .1)  to a delta function at 

the correct  value. 

scheme offers a solution to this problem. 

a s  a solution we have to establish i ts  convergence. 

As was pointed out in I. 3 .4  the Bayesian learning 

To accept the LPT scheme 

We require another assumption before we can establish'the 

convergence of the LPT scheme. We assume that 
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for any x E 

Zk E 3 

Hk E 

Under the assumption (Al) of conditional independence we may 

write it as 

fo rany  x E 

'k 

Hk E ) 5  

The need for this assumption for the LPT scheme a r i se s  

following way., From Eq. (2.6) we note that p is 

function of x which multiplies the prior density function 
zk/Ek9 2 

) in  the updating. If we let it 
'd . .k- l ,&k - 1 

in the 

the only 

have a zero 

valie for some x then there is no way of changing the value of the 

posterior density function a t  that value of x due to the later observa- 

tions. 

l e t  a single observation fix the value of all the subsequent posterior 

density functions for any value of x. 

does not hold for some problem the LPT scheme solution may lead to 

wrong results. 

As the LPT scheme assigns labels probabilistically we cannot 

Therefore i f  the assumption (A4) 

A list of problems which entertain the reproducing densities has 

been compiled by Spragins [lo] and Raiffa and Schlaiffer [ 121. 

their list we find that the assumption (A4) does not put any severe re -  

strictions. 

Examining 

It i s  satisfied by all the problems with the reproducing 
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densities. 

density p 

distribution i s  the unknown. 

is presented in Appendix B. 

The only exception is a problem in which the conditional 

is a uniform distribution and the range of such uniform - z/E 
A detailed discussion of this problem 

The convergence of the LPT scheme is a direct consequence 

of two theorems. These theorems which establish the proof of con- 

vergence a r e  formally presented in  Appendix A. 

is required in  the proof of Theorem I. 

The assumption (A4) 

In Theorem 2 we require the 

further assumption of the existence of a sequence of functions of the 

observations converging to the correct value. In other words, from 

whatever we a r e  observing and the way we a r e  assigning the labels, 

the possibility of reaching the correct value from p (x) i s  not ruled 

out. 

X - 
Further,  as shown in the proof of Theorem 2 in the Appendix A, 

the existence of such a sequence of functions implies a unique solution. 

This assures  that the mixture we a r e  dealing with is identifiable [ll]." 

Note that we a r e  dealing with the mixture 

1 
If has two points only, Ho and H , p-(z) takes the form 

We say 

and 

1 2 
that this mixture is identifiable i f  for any two points z and z , 

1 
a r e  two independent equations in  p (Ho) and p (H ). H H 

In general p ( z )  is said to be aentifiableTf the mapping of p (H) H - 2 
on to pz(z) a s  degned by the Eq. (A) above,is one to one Ell]. - 
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To see heuristically why the LPT scheme converges we note 

that we a r e  treating the label as a random variable. If we consider 

the average behavior of the posterior density function with respect 

to the randomness in  the label we get 

The way we have selected the label, the right hand side is nothing but 

This is the posterior density function fo r  the Bayesian learning scheme. 

Hence the LPT scheme follows the Bayesian learning scheme on the 

average. 

z/+2x; k) ' The convergence of the posterior density functions p 

involved in the Bayesian learning scheme, has been well established 

[3], that 

w.p. 1 ( 2 . 1 0 )  

All the functions p a r e  positive functions. The expectation 

operation of Eq. (2.8) is like positive summation. The only way in 
d%k9 & 

which Eq. (2 .  9) and ( 2 . 1 0 )  can be satisfied together is i f  

( 2 . 1 1 )  
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11.4. The Lmplementation of the LPT Scheme 

Let us consider the practical questions regarding the implemen- 

tation of the LPT scheme. For  this scheme at kth stage 

(i) 

(ii) 

(iii) 

given zk and p we compute p €3 /2 9 

with PI / z  ($; Zk9f k-19‘k-l) = PH / z  (1,; 

d % k -  1 9  &k- 1 -k k9 *k- 1 J g k -  1 

-k -k3%k-17Lk-l -k -k9 $-k- 1 k-k- 1 

A ) (Eq. 2.5) we draw a random number I! having k 3 a  k - l9  k-1 -k Z 

this probability density; and 

using z and $ we update the prior density function 

pd+k-l,gk-l(x; 7 k-l,%k-l) to the posterior density function 

k 

‘Z/+k, &Lx’ 1 k’ R k ). 

The way we have defined Problem C, the prior and posterior 

density functions here  entertain a sufficient statistic. 

step (iii) requires recomputing the values of the parameters 

As a result 

defining the sufficient statistic. This is a straightforward operation. 

We know the functional forms and the parameter values of all the func- 

tions involved in this computation (Eqs. 2.2, 2. 3 and 2.4). Therefore 

we can ca r ry  out this step also. 

We a r e  treating the label $ as a random variable Lk. In step (i) 

we compute the probability density function we want L 

step (ii) we have to generate a random number having this probability 

to have. In -k 

density function. Note that we want a single outcome or  observation 

of the random variable Lk as . 
To examine various techniques we can use for this, let us consider 

!k 

the problem of generating an  outcome of the random variable a defined 

i n H  space and having a probability density function p (I!). I! - 
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Algorithms a r e  available [4] for generating Pseudo random 

number 2 on a digital computer. 

on G! = [0,1]. 

has a uniform probability density 

To generate any other random variable on the computer 

we can consider w as a random sample point (from the sample space 

a), and define the random variable a a s  

- 1 = J / @ )  (2.12) 

To get an outcome 1 we observe a value w of E. 

$' we can get 1 using (2.12). 

function $' knowing p1 (l) for various 3-1 spaces. 

(a) Discrete space - 

If we know the function 

Let us see how we can ar r ive  at  the 

- 

W h e n x  space is discrete p (I) is a collection of delta functions; 1 - 
Pq 

PI@) = p(ei)s(e  - .ei) 

i i 

(2.13) - 
i 

Here P(l ) gives the probability of occurance of 1 , a point in 

Note that 

space. 

P(&) = 1 (2.14) 

i 

We can easily divide G! into n par ts  (where ).I contains n points) such 

that the length of the ith part  is P(li). 

observed value of - w lies in  the region of P(l ). 

has the form shown in Figure 2.1.  

k Now we select I i f  the randomly 

k The function J/ now 

(b) is the r ea l  line - 
Let us define the distribution function P1(l) for the density function - 

P#) as - e 
(2.15) 
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We note that P,(I) is a monotonically increasing function with - 
P (-00) = 0 I - P (00) = 1 I - 

We can generate a value of a by solving 

P (I) = w I - (2.16) 

for any random outcome w o r  E. 

Reference [ 9 ]  has presented various techniques for  solving such 

(2.16) is an implicit equation. 

equations. Fo r  our purposes we assume that a solution can be found 

to this equation. 

(c) is an m dimensional vector space - t 

If the dimensionality of H is m we may make an  m dimensional 

sample space a s  52, x a2 x a3 x . . x 52 where m 

ai = [0, 11 for all i 

The random observation i s  made in this space now as an  m dimensional 

vector. To generate we use a function to map this sample space on 

3-h . 
So, we see that the LPT scheme leads to a solution of Problem C 

which can be implemented in practice using a random number generator. 

Let us consider some examples next. 

11. 5. Examples 

Let us consider two examples and examine the behavior of their 

LPT solution. As the f i rs t  example we consider the problem of 

'In pattern classification problems the 3-c space i s  discrete in  general. 
Therefore this case rarely occurs in pattern classification. 

This may be an involved problem but can be solved. 
>:< 
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1 
Section I. 4.1 in  whichH is [Ho9 H 1. The two conditional densities 

1 0 
pdE(z ;  H ) and p 

conditional density p 

(z; H ) a r e  gaussian. The mean of the first 
1 

z/E 
(2; H ) is considered unknown. As the second - z/rr 

example we consider the same problem but assume that the variance 

of one conditional density is unknown. 

11. 5 . 1 .  Example C-1 

As the first example of the LPT scheme let  us consider the 

problem of Section I. 4.1 and define Problem C-1  as  follows: 

Problem C-1 

Let 

p (Ho) = 1 - ' p  

pz /H (=k; Ho) - N(0, R )  
-k -k 

(2.17) 

for all k.'k (In other words the two conditional densities a r e  gaussian. ) 

1 We t rea t  the mean of the conditional density function p (2k;H ) 
Z&k 

as the unknown parameter x. 

compute the sequence of the posterior density functions using the LPT 

Observing a sequence a k  we have to 

scheme - 

* 
This structure can also be defined as follows. Let 

= H x t v k  zk -k 
where fi with probability p 

with probability 1 - p 

-k 

Ek = lo 
vk is a white noise sequence p, (vk) = pv(v) - N(0, R )  - 
H and v a r e  independent. -k -k 
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Raiffa and Schlaifer [ l 2 ]  have shown that this problem entertains 

reproducing densities. The reproducing density has the gaussian 

form, 

- 
The mean % and the variance P 

sufficient statistics. The updating, therefore, requires computing 

constitute the fixed dimensional k 

the values of these two parameters which can be done as follows, 

- 1  T -1  t LkR Lk 

(2.18) 

( 2 . 1 9 )  

where 

( 2 . 2 0 )  1 L = 1 i f  \ ' =  H and Lk = 0 i f  \ =  Ho k 

Eq. ( 2 . 1 8 )  simply computes the sample mean of all the samples which 

a r e  labelled as H . 
function of ik. 

- 1 Here x i s  a function of j k  and zk while Pk is a k 

The updating for this problem i s  straightforward. We start 

with the prior density function p (x) - N(go,Po)  which we a s s m e  
X - 

given. Before we can update, however, we have to generate the label 

\ for the observed sample zk. 

LPT scheme. 

Labelling - We note that for this problem 

1 
1 ZR(Zk k 

Let us see how this i s  done for the 

2 
-L x) - -  

p z k k  E k  (zkix9\) = 'm e (2.21) 

where Lk is given by ( 2 . 2 0 ) .  Therefore using Eq. ( 2 . 4 )  
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- )2 
1 

1 2Pkml (x - Xk-l 
“- 

dx Jq; e 

(2 .22)  

And 

- 1 - 2  
2(  R t P k ,  ) (zk-xk- 1 

. P e  JV 

(2 .23)  - 
- a k  say 

As we know everything on the right hand side of Eq. (2 .23)  we can 

easily compute the value of a for any observed z Note that k k’ 
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To generate the value for 

a uniform distribution on [0, 11. 

we draw a random number w from !k 

If 

and if  

9 $ = O  2. 24 

The value of $ so generated i s  used a s  the label in  this scheme.* 

This label i s  used with z in  the updating. k 

The implementation of the LPT solution of this problem i s  straight- 

forward. To examine the behavior of the solution we considered the 

following numerical values for the parameters : 

R = 5  

p = 1/2 

x = -4 
0 

The 'learning with a teachers,  decision directed and the LPT 

schemes were simulated on a general purpose digital computer. The 
- 

the mean of the kth posterior density function, a r e  xk' sequences of 

shown in Figure 2 . 2  for two typical sequences of 500 observations 

each. The sequence of < is plotted for each of the three schemes. 
- 

Examining Figure 2 . 2  we note that the % sequence for decision 

directed scheme converges around the value - 4 - 6  while the 'learning 

with a teacher '  and the LPT schemes converge to the value -4.0 and 

show a very similar behavior. 

* 
In the decision 

$ = Ho 

L = o  k 

directed scheme we choose the label a s  

if a > (1 - ak) o r  0 . 5  

i f  a k < 0 . 5  . 
k 





2-21 

The Bayesian solution ('without a teacher') to the problem con- 

sidered in this example is infeasible due to the computational com- 

plexities discussed in Chapter I. Therefore we cannot compare the 

performance of the LPT scheme with it. We may, however, compare 

the performance of the LPT scheme with the 'learning with a teacher' 

scheme via simulations. 

about the variance of < for these schemes. 

For  this we would like to get some idea 

To get the sample variance of for these schemes we repeated 

the simulation 60  t imes starting with p (x) - N(-4, 20) .  

variance was computed from these runs* and is plotted in Figure 2 . 3 .  

In this figure we have omitted the variance curve for the decision 

directed scheme. 

incorrect value,the sample variance curve for this scheme i s  not 

The sample 
X - 

As the decision directed scheme converges to an 

meaningful. 

Examining Figure 2 . 3  we note that the variance curves for  the 

LPT scheme and the 'learning with a teacher' scheme have a similar 

shape. The variance for the LPT scheme is larger  than the variance 

fo r  the 'learning with a teacher' scheme for the same number of obser- 

vations. We expect this because the 'learning with a teacher' scheme 

makes use of the knowledge of the correct classifications of observed 

sample s e 

Further, we note that the variance of < for the LPT scheme is 

approximately twice the variance for  the 'learning with a teacher' scheme. 

We will  have more to say on this in Section 11.6. 

* 
Actually we computed the variance from 60 as  well a s  80  runs and 
found them to be very similar.  
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11. 5.2. Example C-2 

In the first example (C-1) of the LPT scheme we considered 

1 a two class case (io e . M  = [Hop H 1) in which the two conditional 

densities were normal and the mean of one of them was unknown. 

Here let us  assume the same structure but consider one of the 

variances unknown and define Problem C-2 as follows. 

Problem C-2 

Let 

p (HO) = 1 - p  
gk 

pz /H (Ok; Ho) - N(0, R )  
-k -k 

(2.24) 

for all k. We treat  the variance of the conditional density function 

1 H ) a s  the 'z /H ('k; -k -k 
late the LPT solution 

1 k' 
If we define the 

unknown parameter, and a r e  required to formu- 

for this unknown parameter, observing the sequence 

unknown parameter x as l/variance we can make 

use of the reproducing densities a s  described by Raiffa and Schlaiffer 

[12]. When we define x this way we can write 

The Gamma-2 density function is a reproducing density function for 
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this problem. This density function has the following form:* 

1 1 z vk- 1 - z XVkVk 
1 
- v  v 2 k k  1 e (-xv v ) 

'dfk9 (X;aklek) = ( Z V k  1 - l)! 2 k k  

(2.26) 

and v a r e  the two parameters of this density function and form 'k k 

the fixed dimensional sufficient statistics. Here v is a function of 

Zk alone while v i s  a function of 

k 

and ;e. in  the following way: k a k  k 

1 'k-1 ' i f  $ = H  

k- 1 V 

' k=  [ 
i f  \ = HO (2.27) 

Note that by Eq. (2.28) vk computes the sample variance of all 

1 the observations which have a label H Eqs. (2.27)  and (2.28) define 

the updating process for this problem. 

from a pr ior  density function which i s  a Gamma-2 distribution with 

the form, 

This updating process s tar ts  

1 
2 0 0  
- v  v 

PX(X) = 1 - (yo - l)! 

xv v 
1 1 y o - l  - -  2 0 0  e 1 

2 0 0  
(-xv v ) v > o  

v > o  
0 

0 

We assume that v and v a r e  given to specify the prior density function. 
0 0 

* 
This density function is defined with 

x > o ,  Vk > 0 and vk > 0 . 
' 1  1 

2 
2 k k  

Figure 2.4 shows a family of curves for  this distribution. 

The first and second moments of this density function a r e  - and 

respectively. 

- v  v Vk 
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We require the label $ in the updating process. To generate a 

label using the LPT scheme we have to compute p 

H ,ak- l ,&k-l) .  1 Using Eq, (2.4) we write 

- e  

1 
- V  - 2 k- - 

1 
2 k-lvk-l dx - -xv 

1 - z ) !  
1 

'k-1'2 

And 

- 
- a k  say 

The r ef o r e 

To generate the value for we draw a random number w from a .p; 
uniform distribution on [0, 11. If 
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k w ' ( a  1 $ = H  

and i f  

0 1 = H  k k 
w > a  

The value of $ so generated can be used in the updating process.  

This example was simulated on a general purpose digital 

computer with the following parameter values; 

p =  0 .5  

R =  5 

p = o  

v = 1  
0 

v = I  
0 

The correct  value of X was taken a s  0 . 1  so that the correct  value of 

the variance was 10.0. 

Figure 2. 5 shows two typical sequences of v 

decision directed and 'learning with a teacher '  schemes. 

decision directed solution shows a very eratic behavior *: while the 

vk sequence converges to the correct  value, 10, for both the LPT 

and 'learning with a teacher '  schemes. 

behavior of the LPT and 'learning with a teacher '  solutions we r e -  

peated the simulation 50 times and computed the sample variance of 

for the L P T ,  k 

The 

To get a better idea about the 

* 
Among the many t r ia l  runs we found that the v sequence of the decision 

directed solution to this problem either remains at a very small  value - -  
around 2.4 -- or  goes to  a very large value around 12. 5. This happens 
often enough that the two curves shown represent very typical cases  of 
the decision directed solution for this problem. 

k 
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f o r  both the schemes. This sample variance is shown in Figure Vk 
t 2.6. 

Examining the Fig. 2 . 6  we find that all the comments about 

Here the variance Fig. 2. 3 in  Section 11. 5.1 a r e  valid here also. 

of v for the LPT scheme becomes approximately twice the variance 

of vk for the 'learning with a teacher' scheme, as the number of 

observations increases.  

k 

We shall t ry  to explain this in the next section. 

11.6. The LPT Estimate: Some Properties 

The structure of the problems we a r e  considering here is such 

that x i s  some unknown parameter of the conditional density function 

P ~ / ~ ( z ; H : x ) .  

estimate of x which is optimal with respect to the cost function J 

defined by Eq. (1 e 4). 

We a r e  given some observations and have to make an - -  

When using the Bayesian estimation philosophy 

we found that the posterior density function contains all the information 

required for making the optimal estimate. Therefore we reformulated 

the supervised and unsupervised learning problems (Problem A and B) 

of Section I. 2.1 i n  

function as a solution. 

Section I. 3 and accepted the posterior density 

In Section 11. 1 we restricted our attention to a 

class of unsupervised learning problems and called this Problem C. 

We accepted a sequence of posterior density functions which converge 

in the sense of (2.1) as a solution to Problem C. As a result we get 

the posterior density function p x/ 

Problem A and px/ 
,& - % k  k 

ak'%) a s  a solution to 

,;e (x; jk,Lk) a s  a solution to Problem C. From 
- %k -k 

the posterior density function we a r e  required to make an estimate of x. 

'We calculated the variance for 50 a s  well a s  80 runs and found the two 
to be very similar. 
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To make an optimal estimate using the posterior density func- 

tion Px/ 

ledge of the cost function J. 

Problem A after k observations,is a function of the k observations 

(jk,tk). Therefore we may write 

% (x; Ik9‘k) Or  Px/ R (x; 3 k,t k) we require the know- 
- +k’-k - #k’-k ,A 

In general \, the estimate in the 

(2.29) 

We note that the density functions p 

form. 

we wil l  get the same function 

have the same 
lf/%k,& and pd#,&k 

Therefore i f  we use the same cost function for the Problem C 
*c  for the estimate x k k and we may write 

(2. 30) 

The estimates here  a r e  functions of the random observations and 

therefore a r e  random variables themselves. We would like to get 

some idea about the variance of these estimates. 

From (2 .29)  and (2. 30) we note that ZA and ;rk“ have the same k 
*A *C functional form. % uses the correct  classifications \ while xk 

uses the labels generated in the LPT scheme a s  the classifications. 

Note that Sk is a random variable and given a value of -k’ z -k H has 

the density function pH /z (Hk; zix?.  The l a b e l 4  is generated in  the 
-k k 

LPT scheme from the density function p 

pendent of Elk. 

correct  value in the sense of (2.1). Therefore H and 1 have the same 

probability density function asymptotically. 

have identical density functions asymptotically. 

and is inde - 
-k €3 / .  k’ +k- 1 &k- 1 

We have seen that the LPT scheme converges to the 

-k -k 
,A ac As a result  5 and % 

Lemma: If - x1 and x2 a re  two independent random variables with the 

same density function say p then 
X - 

E { ( x ~  - x l )  2 } = 2Varx l  (2.31) 
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Proof.  

2 
= 2{E(x1) " (E(X1H2I 

= 2 Var x1 

If we a r e  trying to estimate the random variable 

estimate it by the random variable . ~ f ~  then (ff2 - xl) i s  

x and we -1 

the e r r o r .  

As x and x have identical distributions, the mean e r ro r  is zero. 
2 E[(xZ - xl )  ] now has the interpretation of the variance of the e r ro r .  

We see that the variance of the e r r o r  i s  twice the variance of x 

-1 -2 

-1 * 

H -k 
we a r e  using L 

the same distribution asymptotically. Hence, the same remarks 

apply to 

that 

is an unknown random variable for the LPT scheme in which 

and Lk have in i ts  place. As we have seen above, H -k -k 

,A and % in Eqs. (2 .29 )  and ( 2 . 3 0 ) .  Therefore we may say 

The left hand side i s  the average variance of the LPT estimate. 

As a result the average variance of the LPT estimate asymptotically 

equals twice the variance of the 'learning with a teacher' estimate. 

This is also confirmed by the examples of Section 11. 5. 

11. 7. Summary 

In this chapter we restr ic t  our attention to a class of unsupervised 

learning problems. 

(or  assigned) this class of problems entertains reproducing densities. 

We define this class of problems a s  Problem C. 

If the labels of the observed samples a r e  available 
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As a solution to Problem C we suggest 'learning with a proba- 

bilistic teacher (LPT) scheme. This scheme uses a probabilistic 

labelling in which the observation z i s  assigned a label generated at  k 

random with a probability density function p H /2 2 ($; Zk91k...19Ck-1). 
-k k' %k- 19 -k-1 

The convergence properties of this scheme a r e  established and the 

questions relating to the implementation a r e  examined, Some examples 

a re  presented which show a comparison of the results of this scheme 

with the 'learning with a teacher' and the decision directed learning 

schemes. 

LPT estimate is twice the variance of the 'learning with a teacher' 

Further we find that the average asymptotic variance of the 

estimate. 
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Appendix A - The Convergence of the LPT Scheme 

In this appendix we establish the convergence of the LPT scheme 

in the sense of Eq. (2.1).  Fralick [3] has proved the convergence of 

the Bayesian learning scheme. Here we present a similar proof of 

the convergence of the LPT scheme. 

F i r s t  let us prove a more general theorem about the sequence 

of the posterior density functions p ( x ; j  k9%k).  This theorem 
- % k  x/ ,&. k 

has been proved in [2] for a d i sc re t eR  space. It was proved by Daly 

[5] for the posterior density functions p ( ~ ; 2 ~ ) .  
z’%k 

Theorem 1. 

Any sequence (3 1, . . . ) such that 

bounded martingale i f  

f(x) is any non-negative Lebesgue measurable function, 

max f(x) = M 03, 

(x; 3 k,%k) i s  computed using the L P T  scheme, 
P d F k 9  %k 

‘Ektl /Lk+l9 5 9  %k9 &k 
(Zk+l; \ t19 x9 3k9  L k # o for any x EX, 

Proof. 

To prove that the sequence (219 12,. ) is a bounded martingale 

we have to show that 

(a) E{ l%k/}  < O0 (A-2) 
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Since f(x) is  non-negative and bounded by M o n x  

Hence 

and 

E{ IqJI < O3 

To show (b) let us evaluate E{% / ,R } a s  k t l  %k -k 
n 

(A-7) 

As we can write 

where 



2 - 3 6  

(A-10) 

The expectation on the right hand side may be expressed as 
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(A- 1 2) 

where 

/ 9g (“ktl;Ik2 ;R k ) =  ’Zktl 3k -k 

(A- 13) 

As, according to (iv) 
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from (A-9) 

and from (A-13) 

(A- 15) 

(A- 16) 

Under these conditions we may write the right hand side of (A-12) a s  

= 1  

Substituting this in (A-10) we get 

(A- 17) 

= %k 

This proves (b) and the theorem. 

This establishes that the sequence (I1, 12,. o .  ) is a bounded 

martingale and a s  Doob [6] has shown, a bounded martingale converges 

with probability one. 

w. p. 1 to a value 

along which the posterior density functions a r e  computed. 

Hence the sequence (3 19 % 2 , .  . ) converges 

3 k’ ‘k’ which i s  independent of the sequence { 
%a)) 

In order to show that the LPT scheme converges to the right 

value we use Theorem 2 which is  a modified version of a theDrem due 

to Braverman [7] and Fralick [3]. 
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Theorem 2. 

If there exists a sequence of functions ( ~ m ( ~ m , ~ m ) }  defined 

o n X  such that lim # = x with probability one, where x is the 
m o  0 m+co 

correct value of x, then 

Proof. 

Let us consider the sequence of functions 

where E i s  some set defined i n x .  We can write 
X 

(A- 18) 

(A-19) 

(A-20) 

whe r e  

X 

i s  the indicator function of the set  E 

the sequence of functions P (E ) forms a bounded martingale and k x  

EX. Hence from the Theorem 1 
X 

lim Pk(E ) = Pm(Ex) 
X k+m 

w.p. 1 (A-21) 

Further, i f  {g,y19y2,. e . ,yk, . e . }  is a sequence of random variables 

such that E[u/x1 y2, . . , yk] is a bounded martingale then E[g/xl y2, . . e , r,] 
converges to u with probability one [8]. 

then E [ d y l ,  . . 

If we let u = I 

y,] becomes P (E ) which is a bounded martingale a s  

and y. = ( z . ,  li) - - E  1 1 
X 

k x  

shown above and hence must converge to I which is either 0 o r  1. 
X 

E 
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Therefore P 

value of x which is independent of the sequence 4 
the observed sequence was ( 

sequence of functions & (3 
puted along this sequence the discontinuity will  occur at x 

probability one. 

implies that the discontinuity of P (E ) will  occur a t  x for any 

(E ) is a step function with a discontinuity a t  some a x  

% t But i f  kLk 
on which there exists the 

converging to x w.p. 1, com- 

&n&-l) 

m m2'm) 0 

with 
0 

And a s  Pa(E ) is independent of the sequence, this 
X 

0 3 x  0 

sequence. Hence 

(x;a k,Rk)  = 6(x - xo) w.p. 1 
x/ ac 

lim p 
k + a  - %k'-k 

(A-25) 



2-41 

Appendix B - An Example Violating the Assumption (A4) 

Let us consider the following problem: 

Let 

0 1  (z;H ) = - [u(z t a) - u(z - a)] 'z/H - -  2a 

and 

1 1  (z;H ) = - [U(Z t b) - U(Z - b)] 'z/H - -  2b 

where 

i f  a > O  

i f  a - ( O  

i. e. the two classes have a uniform distribution (Figure 2. 7a) and 

Let a be the unknown constant. 

pendent, identically distributed random variables and have to ' learn' 

We observe ak a sequence of inde- 

the value of the constant a. 

the form 

which is not a non-zero function. 

It does satisfy all the other conditions required for  Problem C. 

[ l o ]  has shown that the reproducing density function has the form 

Hence the assumption (A4) i s  violated. 

Spragins 
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where 

0 i f  Q. = H 
I Z i  I 1 

m i = {  0 i f  Qi = H 1 

and 

Mk = Max {mi} 

Figure (2. 7b) shows one such function. 

If we want to use the LPT scheme for this problem, for any 

observed z we compute p using Eqs. (2 .  2),  (2.  3)  

and (2.4) .  We may select a label $ according to (2.  5). 

this assignment of the label i s  done at random so that i f  

k Eklzk2 %k- 12 &- 1 
Note that 

assigned label may be €3": 

Eq. (2 .  6). 

The updating may now be carried out using 

The reproducing form of the posterior density function a s  given 

above is zero till the maximum absolute value of a l l  z . ' s  assigned the 

label Ho. 
1 

If a > b this wil l  converge to the largest  observed sample 

and in the limit converge to the correct  value of a. But i f  a < b, a 

single assignment of a z 

1 came from the class H ) to the class Ho will rule out the correct  value 

having a value greater than a (therefore it i' 

of the unknown constant once and for all. F i g .  2 . 7  shows one such 

1 sequence of computations. The observed z (> a)  i s  from class H . k 

The probability p ie (HO; zk, j! k- lJ%k- l )  for this observa- 
-k €3 /2 k' %k- 1 -k- 1 

tion i s  0. 5. Therefore with a probability of 0. 5, $ = Ho. When this 

happens the posterior density function rules out the correct value of a 

at  this stage. The probability of such an assignment is finite for the 
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LPT scheme. 

result for this problem. 

Therefore the LPT scheme will not give the correct  
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3 .  Bayesian Decision -- 

Appendix C - Block Diagram Structure of Solutions to Learning 

D 

Problems in Pattern Classification 

The basic structure of various learning schemes considered 

in this work can be described in  terms of the following blocks 

. This block accepts H as  the input k 1. 

and gives a 2; 

such a way that z is available. H can be available to the 

"supervisor I t  or  "teacher only. 

This happens in the system under observation in 

k k 

k' 

+EF 2. Compute Probabilities, -- 

This block accepts zk a s  the input and computes p . If some 
Ek/& 

a s  the prior distribution of x/past info x i s  unknown, it accepts p 

x and makes use of i t  in the computations. 

This block takes the bayesian decision of the class of zk from 

P H ~ / Z ~ ,  past info' 

Hk (T( Hk 
4. Teacher -- 

This block has access to Hk, the correct class of H 

H available a t  i ts  output. 

It makes 
k' , 

k 
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5. Labelling - ~ 

This block performs labelling. 

pr ior  density 

posterior density U Zk 6. Updating - 

This block accepts the prior density, (and H o r  !$ i f  available) Zk k 
and computes the posterior density. 

Based on these blocks, the structure of various schemes i s  

presented in Table 1 .  



TABLE 1 

+. 

SCHEME 

* 4 S C D CLASSIFICATION 

D S C b 
LEARNING 

WITH 
A 

TEACHER 

D I 

- 

LEARNING 
WITHOUT 

A 
TEACHER 

L , I  
I 
L * 

DECISION 
DLRECTED 
LEARNING 

T 

LEARNING 
WITH 
A 

PROBABILISTIC 
TEACHER 

.D 
U 

BLOCK DIAGRAM 

c S C * D -  
c 

t”------ 1 I 

I - -1 
I 
I 
I 

_I U 

~ 

I ‘  1 I 
‘ I  

I L U 
1 

+ 
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CHAPTER 111 

APPLICATION O F  THE LPT SCHEME TO 

GAUSS MARKOV SEQUENCE 

In all the estimation problems we have considered so far in 

this work we wanted to estimate the unknown value of a parameter. 

We were allowed to observe a sequence of "samples" which may or  

may not contain information about the parameter.  

value of the parameter remained fixed as we observed the sequence 

of samples. 

tically distributed samples. 

The unknown 

Therefore we observed a sequence of independent iden- 

In various practical problems the parameter of interest i s  the 

state of some dynamic system. 

tracking the position of a satellite. 

and hence the "parameter" we want to estimate, keeps on changing. 

For  example we may be interested in 

The state of such a dynamic system 

Let the dynamics of the system be defined by 

where w 

jdk and a r e  known constants. 

stage. 

We a r e  interested in estimating x 

sequence at  the k stage. 

is a gaussian purely random sequence of known mean and variance. 
-k 

k 

We note that zk, k = 1,2,  3 , .  . . is a Gauss Markov sequence. 

th i s  the state of the system at the k z k  

the state of this Gauss Markov k 
th 

We may adopt the Bayesian estimation philosophy for this esti- 

mation. In that case some a priori  knowledge of the state is required. 

This may be in terms of the prior distribution for xl. From this prior 
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knowledge we can make the estimates of the states for all  k. But i f  

we a r e  allowed to observe some samples we may be able to improve 

these estimates. 

the perfect estimate. 

served but not directly or  perfectly. 

a zk which is some function of the state x 

tain some observation noise also. This observation can be used to 

improve the estimate made from the prior information. 

If the state could be observed directly we can make 

In practice the state of the system can be ob- 

At the kth stage we can observe 

In addition z may con- k’ k 

Let us consider the observation z as an outcome of z 2: where k -k 

= H x  t x k  Zk k-k 

and v is a gaussian zero mean independent white sequence. 

i s  a known constant,the Bayesian estimation of -5 making use of z i s  

like a supervised learning problem (Problem A) of Chapter I and can 

be solved rather easily in terms of the well known Kalman-Bucy filter 

When Hk 

k 

-k 

In some practical problems H cannot be considered as a constant. k 

For example in the’tracking of a satellite some observations do not 

contain the signal which results in H 

When we consider H a s  a random variable the estimation problem 

becomes an  unsupervised estimation problem. As we have seen in 

Chapter I the Bayesian estimation leads to an infeasible solution to 

this problem. 

having a value 0 o r  H at  random. -k’ k’ 

-k 

In Chapter I1 we noted that the LPT scheme leads to a feasible 

solution of the unsupervised learning problem. Here we show how the 

* 
We a r e  treating the variables a s  scalars in this chapter. 
is valid i f  x and z 

The discussion 
rk and H appropriate matrices.  a r e  vectors and bk, k k k 
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LPT scheme can be used to estimate the state of a Gauss Markov 

sequence. 

The only work reported in literature on similar problems is  by 

Nahi [l]. He has constructed the best linear estimate for  the problem 

with H The inherent nonlinearity of the 

problem suggests that some nonlinear estimate may be better than the 

best linear estimate. 

having a binary distribution. -k 

In this chapter we define a Problem D in which the unknown para- 

meter x forms a Gauss Markov sequence. The observation process 

i s  defined so that the estimation problem i s  an unsupervised learning 

problem. 

An example i s  presented in which we compare the performance of the 

k 

We formulate a solution to Problem D using the LPT scheme. 

LPT scheme solution to the best linear solution of Nahi. 

111. 1. Problem Formulation - Problem D 

Let us define Problem D as follows: 

Consider a discrete Gauss Markov Process  x k = 1,2,3, .  . e -k' 

defined by 

X -kt 1 

bk and r' a r e  k i s  a Gaussian white noise sequence such that zk known. 

-0. 

is the kroneker delta function, i. e. 
r 

i f  kl = k2 

= {i i f  k l  # k 2  
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We observe z where -k 

= H x  tzk Zk -k-k 

The observation noise v is an independent gaussian white noise -k 

sequence and 

"{Lk} = 

( 3 . 4 )  

(3.5) 

In addition to the additive noise v the observation z 

cative noise H 

has a multipli- -k -k 
H is a random variable independent of all  other -k' -k 

random variables and has the probability density function pH (Hk). 
-k 

This density function is known for all  k. 

We a r e  given p (x,) - N(!l, M ) a s  the prior density function 
X 1 -1 

At the kth stage after observing a sequence 
-1 - a k  

for x 

make an estimate of x 

sufficient to compute the posterior density functions to make such 

we have to 

In Section I. 3 we have seen that it is a s  2 -k k' 

optimal estimates. Here we accept the posterior density functions 

a s  a solution.* 

We note that Problem D is an extension of Problem B-1 (of 

Chapter I) and Problem C-1 (of Chapter 11). In all these problems the 

observation process i s  the same. In B-1 and C-1 x was an unknown 

constant. Its value was unknown but fixed for the observation sequence. 

1 ForProblem D we allow the value of x to change as a Gauss Markov 

s equenc e. 

4. -8- 

Deutsch [2] has shown that the mean of the posterior density function i s  
optimal for a general class of cost functions. Therefore when we have 
to make an estimate we shall use the mean of the posterior density 
function a s  the estimate. 



3-5 

111. 2. General Solution 

To solve Problem D we have to compute the posterior density 

function p ). If we arrange the computations sequentially, 

at the beginning of the k 
zk/a-k( xk' 1 

th stage (i. e. at the end of the k - lSt stage) 

( x ~ - ~ ;  i) k-l) .  We observe / we have the density function p 

zk and have to compute the density function p 
zk-1 -&k-l 

). This 
Xk/+iXk; 3 k 

.A 

can be carr ied out in  two steps. 

(a) Dynamic Propagation - Using the system equation (3 .  1) and the 

density functions p / ( x k - l ; l k - l )  

and p ( w ~ - ~ )  we compute p / ( X k ; l k - l ) '  
zk-1 %k-l 

-k- W 1 z k  %k-1 

This is a straightforward computation. As Eq. ( 3 .  1) shows, 

x 

x k -  1 * k 

'zk/fk- 1 

is  a weighted sum of two independent random variables x and 

a r e  scalar+ the probability density function 

-k -k- 1 

When 5 and z 

can be computed as follows [3]. 

The right hand side of equation (3 .  7) is a convolution integral. and can 

be computed for any density function in principle, and easily for  

gaus sian distributions. 

In Problem D the density function pw (w ) is gaussian. If k -k 
is a lso gaussian the computations of this step become 

'zk-1 / %k-l 

::: 
If xk and z 

It is  rather simple for multinomial distributions [4]. 

a r e  vectors this computation can still be carr ied out. k 
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/ very simple. The resulting p 
zk %k-1 

and 

where 

i s  also gaussian and 

and 
m 

(3. 9) 

(3.10) 

(3.11) 

(3.12) 

(b) Static Updating - Given the probability density function 

k ) and the observation z psk'%k - 1 (xkj 3 k- 1 

we compute the posterior density function 

We note that as H i s  a random variable this updating i s  the -k 

same as a single step of the unsupervised learning problem, Problem 

B, of Chapter I. We may use Eqs. (1.16) ,  (1.17) and (1.18) to car ry  

out this updating. 

densities a r e  known to exist for this problem and the updating, there- 

fore, requires that a complete nonparametric density function be 

stored and manipulated. 

is infeasible for this step. 

But a s  we have seen in Section I. 4 no reproducing 

As a result the Bayesian estimation procedure 

We note however, that i f  H i s  known the reproducing density k 

functions do exist. A gaussian pr ior  density function results in a 

gaussian posterior density. If 

(3.10) 
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then 

(3. 13) 

where 

- T -1 zk = \ t PkHkRk (zk - Hk<) 

and 

-1 -1 T -1 
Pk = M k  ' HkRk Hk 

(3.14) 

(3. 15) 

Eqs. (3. 11), (3.121, (3.14) and (3.15) define the well known Kalman 

filter [4]. 

In Chapter I1 we have seen that the LPT scheme offers a solution 

to the unsupervised learning problem of the type considered in  step (b) 

of Problem D. 

Chapter I1 a r e  satisfied by the problem of this step. 

LPT scheme can be used for this problem. 

All the conditions required for the LPT scheme in 

Let us see how the 

111. 3. The LPT Solution 

We have seen above in Section III. 2 that i f  H is known, the step 

If the LPT scheme is used for 

k 

(b) computations become very simple. 

step (b) we generate a label 

random variable H which was  active for  the k observation. And a s  

we a r e  treating H 

stage remain gaussian. 

we can c a r r y  out the static updating of step (b). 

and t reat  it a s  the correct value of the 

th 
.R 

-k 

k as known ( \ ) ,  the posterior density functions at any 

However, a label J$ has to be generated before 

th Therefore at the k 

stage we may proceed as follows: 

Step (a) - We a r e  given the probability densities p / ("k- 1; 
zk-  1 g k -  17 g k -  1 

j k -  19 &k- 1) and p (Wk- 1 ) * 
xk- 1 
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Using Eq. (3 .  1) we compute p 

as 

where 

and 

(3. 12a) 

Note that Eqs. (3. l l a )  and (3.12a) a r e  exactly the same as Eqs. (3. 11) 

and (3. 12) respectively. 

Step (bl)  - Probabilistic Labelling - Having computed p / (xk; 
z k  -#k-l>Lk-l 

and proceed t o  generate a label ,f,k-l) we observe z 8k-1 k 

- 
follows. We write 

(3.16) 

As H is assumed independent random variable, we can write k 

(3. 16a) 
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Here 

and 

'.&/Ek9 %k- 1 9  &k- 1 (Xk; Hk' 1 k- 1 9  'k- 1 )dxk . 

(3.18) 

In the way the problem is formulated, we have 

i. e.  2k is independent of ?k- l  andik- l ,given xk and Hk. Also -k x is 

independent of sk. Hence we may write 

k (3.19) 
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In generating the label 

has a probability density function 

it is treated a s  a random variable L which !k -k 

(3.20) 

To generate the label we draw a random number from the probability 

Step (b2) - Using the pr ior  density function p / (xk;a k- l ,%k- l ) ,  
z k  +k-l9&-l 

the observation z and the label $, we compute the posterior k 

where 

and 

Pk -1 = Mi1 f $ R i l l k  , 

(3.13a) 

(3. 14a) 

(3. 15a) 

Figure 3.1 shows a block diagram for  these computations. A 

knowledge of p, (x,) is required to s tar t  these computations. 
-1 

In Problem D we a r e  interested in estimating x which is a random -k 

variable and changes as a Gauss Markov sequence from stage to stage. 

Therefore we cannot really talk about the convergence of any scheme 

in te rms  of Eq. (2.1) (i. e.  the posterior density function converging to 

a delta function). In this case we say that a scheme leads to a converging 

solution i f  the variance of the estimate remains finite. 
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If Eq. (3.1) represents a stable dynamic system, the variance 

of x attains a finite constant value for large k. From Eq. ( 3 .  15a) 

we note that P 

the randomness of 1 wil l  

be less  than (or equal to) Mk, the variance of <. As M remains 

finite i f  we make no observations, we conclude that the variance of 

the estimate % computed using the LPT scheme remains finite. 

the LPT scheme leads to a converging solution of Problem D. 

-k 

is either less  than or  equal to M k k' Therefore when 

is taken into account,the variance of 2 -k k 

k 

Hence 

In the LPT scheme solution of Problem D a s  discussed above, 

we generate a label 

value fo r  the unknown value of the random variable H Hence if an  

estimate can be made for some system with H 

i s  observable [4]) the estimation can be carried out using the LPT scheme. 

for the observation z and treat  it as  the correct !k k 

-k' 
known (i. e.  the system k 

111. 4. The Implementation of the LPT Solution 

We have to ca r ry  out the steps (a), (bl)  and (b2) at  any stage to 

implement the L P T  solution of Section 111. 3 for Problem D 

The computations of step (a) and (b2) a r e  exactly the same a s  

those of a Kalman filter [4]. 

Rk i s  not known in advance and has to be generated at  every stage after 

the sample value is observed. If H is known, in a practical imple- k 

mentation the h sequence wil l  have to be stored somewhere and the 

In the present implementation the 

The only difference i s  that the sequence 

k 

I value H read in at the kth stage. k 

corresponding value, $, i s  provided by the computations of step (bl) .  

Therefore the implementation of step (a) and (b2) is no different from 

the implementation of a Kalman filter. 

for a vector x and z case also [4]. k k 

This implementation i s  simple 
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In step (bl) we have to generate a label $ which is  used in the 

The label step (bZ) a s  the correct value of the random variable €Ik. 

\ i s  generated after observing z and as an outcome of a random 

variable L 

depends on z 

computed first. 

k 

The random variable Lk has a probability density which -k' 

Therefore this probability density function has to be 

This can be done easily using Eqs. (3.16), (3. li'), 

k' 

(3. 19) and (3 .  20). As a result of this computation we get the probability 

density function p 1 /z ($; Zk, lk- l , f .  k-l) .  We still have to 
-k k'%k-l'-k-l 

generate a random outcoke f r o m H  space with this distribution. k 

In generating such random outcomes on a general purpose digital 

computer we make use of a pseudo random number generator which 

gives a random number 

F o r  a scalar $ we may take 52 = [0,1] and use the methods discussed 

in Section 11.4  to generate 

When x and z 

having a uniform probability density on 52. 

. .R 
a r e  multidimensional vectors, Hk becomes a k k 

multidimensional space. If this space is discrete, i. e. i f  - H has a 

finite number of allowed values only, the generation of $ from the 

pseudo random number is simple and it has been discussed in Section 

11.4. 

To consider the generation of a w h e n x  i s  a multidimensional 

continuous space, let Li be the ith component of L which is considered 

i a s  an n dimensional vector. Let a be defined on the real  line. We 

, In). The marginal 1 2  
know the density pp(L) = p (L ,L , . .-  - a ,a ,a 7 " '  9 -  In  

1 

density function for a' is computed a s  

(3.21) 
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1 Now a may be treated as a scalar  random variable with known 

1 density function p l ( Q  ) and its value may be generated using the 

methods of Section 11. 4. 

to Q we compute p 

1 Q 
Having generated a value for a 
2 1  

as equal 

( Q  ; Q  ) as 
1 

- Q 2/$ 

1 2  
P 1 $1 , Q  ) 

( Q  2 1  ; Q )  = a 9a 
P ,(Q1)  

p 2  1 a / L  
Q - 

1 2 3  3 4  
( Q  , Q , I  , . . e ,  Qn)dQ , dQ , 

. e . , dQn 9 -  Q n  
- - 

1 

P p 7  
Q - 

(3.22) 
2 2 1  A value for  a may now be drawn from p l ( Q  ; Q ) and we may pro- 

a / .  
and this may go on till we have generated 3 1 2 ’  ceed to compute p 

the complete vector - Q .  
a / L  ,a 

In principle the above computation can always be carr ied out. 

It is very difficult however. But we note that it a r i s e s  only when is 

a multidimensional continuous space. 

is so difficult that above may still be an attractive solution. 

In this case Problem D in  itself 

Let us consider an example next. 

III. 5. Example 

In defining Problem D in Section 111.1 we have specified the form 

of all the density functions except pH (H ). In the subsequent discussion k -k 
we assumed that the form of this density function is known, though we 
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did not require the exact form. As an example let us consider a 

specific form of p 

Problem (D-1) - Let a scalar H have a binary distribution, i. e.  

and define Problem (D-1) as: H -k 

-k 

with probability p 

with probability 1 - p 
(3.23) -k H =I 

We consider a Problem D with a scalar -\ and zk 
and H with above binary distribution, as Problem 

(D-1). 

-k 

The LPT solution to this problem uses Eqs. (3. 1 la) and (3.12a) 

for  step (a) and Eqs. (3. 14a) and (3. 15a) for step (bZ). 

in step (bl) we use Eqs. (3.16a), (3 .  17), (3. 19) and (3. 20).  When Hk 

has a binary distribution the labelling step is exactly the same a s  for 

For  the labelling 

Problem (C-1) of Chapter 11. We may then write p -k 1 /2  k7+k-17&-l 

Zk7ak-17'k-l) as 

'k - -  
e 2Rk 

- 
e t 

- (3.24) -ak say 
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and 

To generate the label we make use of a pseudo random number w 

having a uniform density on 52 = [0,1] and assign the label $ as  

w 4 ak & =  1 

w > a  k. & =  0 (3.25) 

This label is used in Eqs. (3. 14a) and (3.15a) and we get 2k a s  the 

estimat,e at  the k stage. th 

111. 5.1. The Best Linear Fil ter for  Problem (D-1) (Nahi's Solution) 

Nahi [ l]  has suggested a method of constructing the best linear 
- 

estimate.::: If Q = Q, Rk = R ,  wk = 0, 8, = 

AN (D-1), the estimate \tl can be computed as follows: 

and r = r i n  Problem k k 

,N 
X k t l  = 'IC<' F2kZk 

where 

' (3. 26) 

(3. 27)  

(3.28) 

(3.29) 

Pkfl  = (6 - PF2k)Pkb ' "Q 

2 
PI = S1 = E(xl} 

(3. 30) 

(3.31) 

AN 
Nahi has shown that P k as used in the equations above i s  the variance of x k '  

:; *N 
By the linear estimate we mean that the estimate xk i s  a linear 

function of the sequence of observations k" 
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111. 5. 2. Numerical Results 

To compare the performance of various solutions of Problem 

(D-1) we considered the following parameter values: 

bk = - 0 . 8  

r = L O  k 
- 
w = 2 . 0  k 

Q = 1 . 0  

R = 1 . 0  

k 

k 

p = 0 .5  

- 
x1 = 10.0  

M1 = 5.0 

We implemented the LPT solution and the Nahi's solution to this 

Along with these we also implemented problem on a digital computer. 

a 'learning with a teacher' type solution in  which we considered H 

known and available. 

schemes i s  to  compute the mean square e r r o r  (m. s. e.)  of various 

schemes. 

as -k 

One way t o  compare the performance of these 

We repeated the simulation runs for k = 1 to 25 enough number 

of times that the 

a r e  presented in  

sample m. s. e.  gave consistent results.:k These curves 

Figure 3 . 2 .  

:k 
Here, to get consistent results we had to repeat the simulation runs 
500 times, whereas in  Problems (C-1) and (C-2 )  of Chapter I1 we had 
to repeat it only 60 times. When the simulation was repeated with no 
process noise, we found that 8 0  runs were enough this time. There- 
fore it seems that this difference i s  due to the presence o,f the process 
noise w in Problem D. -k 
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Figure 3. 2 contains two curves of m.  s. e. for  Nahi's solution. 

As we noted above P 
*N the estimate 5. 

m. s. e. curve. 

apart. 

remains above the theoretical curve at all times. 

of Eq. (3 .  30) gives the theoretical variance of k 
We have plotted this along with the experimental 

We find that for small k these two curves a r e  far 

As k increases they come closer but the experimental curve 

We further note that the mean square e r r o r  is minimum f o r  the 

'learning with a teacher '  solution. 

approximately twice the m. s. e.  of the 'learning with a teacher '  esti- 

mate. This further confirms our observation of Section 11. 6 that the 

average m. s. e. of the LPT estimate i s  twice the m. s. e. of the 'learning 

with a teacher '  estimate. The m. s. e.  of Nahi's estimate, theoretical 

a s  well a s  experimental, is much larger than the m. s .  e. for the LPT 

e s timate. 

The m. s. e. of the LPT estimate i s  

111. 6. Summary 

In this chapter an  estimation problem is considered in which we 

estimate the state of a Gauss Markov sequence. 

additive Gaussian white noise the observation process for this problem 

In addition to the 

has some multiplicative noise also. This i s  defined a s  Problem D. 

After showing why the standard techniques will not lead to a feasible 

solution to this problem, we proceed to formulate a solution using the 

LPT scheme. 

i s  presented in which the results of this solution a r e  compared with the 

best linear filter proposed by Nahi [l]. 

e r r o r  of the LPT estimate i s  always less  than that of Nahi's estimate. 

The LPT scheme leads to a feasible solution. An example 

We find that the mean' square 
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CHAPTER IV 

CONCLUDING REMARKS AND SUGGESTIONS FOR FUTURE WORK 

The main contribution of this work is the 'learning with a 

probabilistic teacher' scheme which can be used to solve a class of 

unsupervised learning problems. 

a Bayesian estimation framework. 

parameter.  

A sequence of observations lak  = zl, z2, z 3 , .  . . , zk is given. 

Bayesian estimation requires the computation of the posterior delrsity 

function p 

bility density function for - z has a mixture form; 

The LPT scheme is formulated in 

x is considered a s  an unknown 

Some a priori  knowledge about it i s  available as p (x). 
X - 

The 

(x; 3 k). In unsupervised learning problems the proba- 
2'f/-k 

When the sequence of the correct classifications %, = HI,  H2, H3, . . . , Hk 

is given along with the sequence 

density function i s  feasible for a class of problems. 

without the knowledge of %,, this computation becomes infeasible. In 

the LPT scheme a label 5 i s  generated for zk, which i s  then treated 

a s  the correct  value of H 

density function now treats the observations a s  classified samples and 

hence i s  feasible. 

the computation of the posterior a 
F o r  that class, 

As a result, the computation of the posterior 
-k' 

The generation of the label 5 for the LPT scheme requires com- 

k 
(We have shown that this computation can be 

puting the probability density function for H 

and the past information. 

carr ied out easily. ) The label \ i s  treated as a random variable having 

given the observation z -k' 
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this density function and is generated on the digital computer using a 

pseudo random number generator. We have shown that the posterior 

density functions computed using the labels generated this way, con- 

verge with probability one to a delta function at  the correct value. 

Also, i f  an estimate is made from the posterior density function of 

the LPT scheme, the average variance of such a n  estimate is twice 

the variance of an estimate made with the sequence Rk known. 

The unsupervised learning problems originating in Pattern 

Recognition context require the estimation of a parameter which has 

a constant value. The LPT scheme can also be used if  the unknown 

parameter value follows a Gauss Markov sequence. 

%k % ) i s  the posterior density function given 

(%,; ak)  i s  the 

x/ & ( x ; l k y  k - +k7 k 
where p 

and the sequence of classifications Sk, and % 

probability of occurance of the sequence R given tk. Therefore the 

computation of p 

possible f~,, and algebraically weighting these with the probability of 

occurance of R 
of labels Zk which has the probability density p~ 1 
fore, while an  algebraic weighing is used in  computing p 

the sequence of labels is made random in the LPT scheme such that the 

-k %k 

k 

requires computing p x/ ,R_ along all 
d+k(x5 a k) - % k  k 

In the LPT scheme we generate a sequence 

(fk;lk). There- 

z/+k(x; 1 k) 

k given bo 
-k %k 

expected value of the posterior density p i s  P, . Doing this 
d s k 9 g k  -/ak 

assures  the convergence of the LPT schemk. 
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The introduction of a randomness to avoid the algebraic weighing, 

while maintaining the expectation at the correct value, may be con- 

sidered the central idea of the LPT scheme. 

IV. 1. Suggestions for Further Work 

The present work opens up a number of new problems. Some 

of these a r e  indicated below. 

1 .  A General Convergence Proof 

Consider two estimation procedures A and B. The estimation 

,A procedure A gives an estimate \ at  the kth stage and is assured con- 

vergence but does not lead to a feasible solution. Estimation procedure 

B introduces an extra randomness 2 

assures  that 

in the estimation process and -k 

AA E [%E] = \ 
;e -k 

AB 
k Under what conditions does the estimate x converge? 

In the work presented here the Bayesian estimation is the estima- 

tion procedure A and the LPT scheme i s  the estimation procedure B. 

We used the martingale theory to prove the convergence in this case. 

A general convergence theorem may be proved in function theory context. 

2. Application of the LPT scheme to Maximum Likelihood Estimation 

and Stochastic Approximation F r am e wo r k  

The LPT scheme may be formulated in the maximum likelihood 

and stochastic approximation framework. This formulation may be 

straightforward but the convergence wil l  have to be established-separately. 
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Perfectly Correlated H, k' 3. Gauss Markov Sequences with Random # 
etc. - 

In this work we have indicated how the LPT scheme may be used 

to estimate the state of a Gauss Markov sequence when 

dent white random sequence. 

i s  considered as a random variable. Can the LPT scheme be used i f  

i s  indepen- 

The scheme may also be applicable i f  jd 

Rk 

51 is perfectly correlated? 

4. Efficient W a y s  of Generating Random Numbers from a Specified 

Probability Density Function 

The ease of implementation of the LPT scheme depends on the 

easy generation of a random number from a specified probability density 

function. 

If x and z a r e  vectors this generation becomes very difficult. Are 

there any efficient ways of generating random numbers from a speci- 

We have considered some feasible methods for this purpose. 

k k 

fied multi-dimensional probability density function? 
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